Dr. Rosamund Vallings
  • Home
  • About Ros
  • About CFS
    • What is CFS?
    • Who is at risk?
    • Diagnosis
    • Management
  • Information
    • CFS/ME and Covid-19 >
      • CFS and Covid-19 - Articles
    • Books
    • Upcoming Events
    • Handouts
    • Reports
    • Links
    • Abstracts
    • News Items
    • Obituaries
    • Articles

REMOVING ISOLATION FROM YOUNG PEOPLE WITH ME

23/11/2017

0 Comments

 
No Isolation for ME

November 15, 2017– 

With myalgic encephalomyelitis (ME), one of the most insidious consequences of this devastating and disabling disease that affects patients can be the isolation experienced.
This is especially true for younger patients and the consequences of this can extend far into adulthood and beyond and lead to unnecessary departure from society.
Already, due to the consequences of a lack of a sensible and standardised pathway to care, patients are stigmatised and excluded from society. 
This need not be so and much could be done to avoid this by tackling this issue early on for young children affected by ME. 

Earlier this year Invest in ME Research was contacted by a Norwegian company who were interested in demonstrating a product that was aimed at reducing the isolation experienced by many younger people who were unable to attend school, or were cut-off from social contact due to illness.
Obviously, the charity immediately saw the parallels with ME and the possibility of raising awareness of one of the least publicised side effects of this disease on patients, and their families.
Our immediate reaction was how we can help use this to publicise awareness of the effects of ME on children. 
We then invited the company – No Isolation – to take a table at our 12th International ME Conference in London (IIMEC12) and offered to work further to support this campaign.
The charity felt this to be a worthwhile cause that could help alleviate some of the unnecessary suffering that careless or ignorant education systems inflict on sick children and their families.
The company’s product - AV1 robot - helps children and youths with ME to continue to be connected to their peers at school despite not being present for all or some of the time due to illness.
The robot is now available in the UK and together, with No Isolation, we are hoping to set up trials.
Invest in ME Research will be contacting local education authorities to trial AV1.
Initially, a trial of three AV1 robots will be set up involving families who currently have a child with ME who is unable to attend school, or whose regular attendance is compromised by ME.
Children and youths with long-term illness such as ME do not need to be excluded from their friends’ activities and progress and schools have a responsibility not to ignore them – something which can lead to long term discrimination.
The robot, called AV1, acts as the students’ eyes, ears and voice in the classroom on days where they cannot be physically present. With AV1 the student controls the robot with an app on a tablet. When the student raises their hand, a light flashes on AV1’s head. The robot can be turned 360 degrees, so the student can see the entire classroom and talk to other students. If the student does not feel like actively participating, they communicate it by turning on a blue light on AV1’s head. AV1 is designed to withstand Childs play, and can join classmates in the playground or on after school visits.


AV1 is already helping ME-patients across Scandinavia, the Netherlands and UK.
Children and youths suffering from ME is the largest user group – a salient point and one that ought to be a red flag for any education system.
Research fellow Jorun Børsting and senior lecturer Alma Leora Culén at the Institute for Informatics, University of Oslo, are researching the technology needs of ME-patients. Having studied the use of AV1 among nine children and youths suffering from ME they see a big advantage in the fact that the robot is designed with ME-patients in mind. Børsting stresses that the robot cannot fully replace normal attendance at school or home teaching, but act as a supplement.

We invite support for this campaign to help younger children – in the hope and knowledge that it could lead to fewer problems in the future for young people affected by ME.
“Of the children I followed several had not attended school in a long time when they first received the robot. 
Some had been out of school for over six months. 
After they received AV1, all of them participated regularly, on their own terms”
 
- Jorun Børsting, Research fellow and senior lecturer Alma Leora Culén at the Institute for Informatics, University of Oslo.


Invest in ME Research will receive no financial reward for this campaign. 
The charity does this in order to highlight and overcome a major consequence of becoming ill with ME.
We invite support for this initiative by assisting us with contact to local schools and education authorities.
The advantage in participating in class through a tablet is that they have full control over sound levels, light and movement. In a normal classroom they do not have the option to control sensory inputs in this way. Furthermore, they can participate exactly when they feel like it, taking into account that symptoms can fluctuate over the course of the illness, even from hour to hour


Invest in ME Research is a major UK charity which campaigns for biomedical research into ME and for proper education of healthcare staff and support for ME patients. 
The charity has been instrumental in initiating a UK Centre of Excellence for ME and there are now five PhD student positions involved in researching ME.
# # #
If you would like more information about this topic, please contact Invest in ME Research at 02380 643736 or email at info@investinme.org.
If you would like to be one of the families trialling AV1 and would be prepared to report back during the trial and work with us, No Isolation and the school/school authority then we would be very keen to hear from you.
0 Comments

Meet the Newly Formed London Med Ed Workgroup

15/10/2016

0 Comments

 
The London Med Ed Workgroup is a new initiative formed during the 11th Invest in ME International ME Conference 2016 (IIMEC11), held in London on June 3, 2016.
Solve ME/CFS Initiative’s vice president for research and scientific programs, Dr. Zaher Nahle, was tasked by meeting organizers to assemble a starter team of Med Ed experts from conference participants to examine national and international medical educational efforts in ME/CFS and explore areas for potential collaboration.
The goals of the London Med Ed Workgroup are to 1) create effective vehicles for improving current medical information on ME/CFS, 2) improve the dissemination and exchange of medical information, and 3) develop educational materials building on existing tools and relevant literature.
On June 4, 2016, the team held its first meeting in London, followed by a teleconference in July. In addition to Dr. Nahle, the team thus far is comprised of several prominent patient advocates and ME/CFS experts including Mary Dimmock, Dr. Rosamund Vallings, Dr. James Baraniuk, and Dr. Vicky Whittemore. Regular updates will be provided on the work of this team as well as its ongoing efforts and expansion.
“This collaborative work is yet another way in which we are trying to create momentum on all fronts of ME/CFS,” said Dr. Nahle. “When it comes to a complex, poorly understood disease like this, it is critical that every medical health professional, all medical school curricula, and every governmental agency site is up to date and equipped with the right information and tool kits; this is feasible in this day and age.”
Notably, Dr. Nahle is also part of the CDC Technical Development Workgroup (TDW) that provides input on the accuracy and effectiveness of the CDC website and the dissemination of correct information to healthcare providers as well as the general public. There are many aspects of the current CDC website that provide insufficient or incorrect information to the public; we are actively engaged in working to correct this serious deficiency.
 
​
0 Comments

Input for New Research Strategies for ME/CFS - NIH Request For Information (RFI): Ron Davis

15/10/2016

0 Comments

 
We are grateful for the opportunity to provide input to the Trans-National Institutes of Health (NIH) ME/CFS Working Group as they develop strategies to guide NIH's research efforts and priority setting for research on ME/CFS. Our mission at the Stanford Chronic Fatigue Syndrome Research Center is to discover causes, a molecular diagnosis, and treatment options for ME/CFS. Through our research efforts, collaborations with the ME/CFS research and clinical community, and extensive engagement with patients, we have defined several elements of importance for future ME/CFS research programs.
 
A key consideration in ME/CFS research efforts is the complex and multisystemic nature of this disease, and we are happy to see the involvement of several NIH institutes in developing this plan. Because the causative factors driving the disease remain unknown, and because work from our team and others has indicated effects on neurology, metabolism, immunity, and more, it will be crucial that calls for proposals allow for open, unbiased, multifaceted, and systematic research. Broadening the scope of ME/CFS research will create opportunities for engaging researchers in other disciplines. Similarly, investigating numerous organ systems and biological pathways perturbed in ME/CFS may well reveal informative parallels to other diseases – for example, we and others have observed symptomatic, transcriptomic, and metabolic overlap between ME/CFS and neurodegenerative disorders like Parkinson's Disease. It is important not to limit research to single organs like the brain, and to integrate results from many different organs and molecular processes so that they can be understood at the systems level. Big data approaches and high-throughput, large-scale molecular profiling should therefore be prioritized. Such efforts hold promise to identify key genes or pathways underlying ME/CFS. Similarly, large-scale in vitro drug screening efforts would help point to a variety of molecules and molecular processes as therapeutic targets. 
 
Understanding the molecular etiology of ME/CFS is another important opportunity. A long-standing belief in the field is that an infectious agent causes the disease, and that the pathogenicity of the as-yet-undiscovered organism is responsible for the severity of the illness. An equally plausible explanation is that a stressor such as trauma, infection, or genotoxic stress may trigger a series of events that lead to a hypometabolic state. This model is observed in children with congenital mitochondrial disorders, where the phenotype does not present itself until after a serious viral infection. This shift in thinking opens up the possibility that ME/CFS has strong genetic and environmental associations, which may also explain the extensive heterogeneity in its presentation, progression, and recovery across patients. The search for novel infectious agents should continue, but research efforts should also focus on understanding individual host susceptibility and response to infection. For example, it may not be a particular infectious agent that results in the disease, but rather a particular host state as a function of numerous biological and external factors that governs an individual’s susceptibility. This perspective mirrors the NIGMS-funded Glue Grant on Inflammation and Host Response to Injury, which used an integrated omics approach to define variable responses to infection and trauma. Characterizing host responses to infection and understanding the mechanisms of the long-term sequelae may reveal insights into ME/CFS that are relevant to numerous other diseases of infectious origin, such as Chronic Lyme Disease and Post-Ebola Syndrome (Mattia et al., 2016). Moreover, such precision medicine approaches would build a more comprehensive understanding of ME/CFS and offer richer opportunities for therapeutic intervention.
 
Another major challenge is our lack of understanding of the prevalence and landscape of ME/CFS, which is largely due to the difficulty in diagnosing the disease. The search for precise molecular biomarkers is a great opportunity afforded by this research program, which would be accelerated through multi-omics approaches in large patient cohorts. Current estimates of the prevalence of ME/CFS vary widely (800,000 to 2.5 million cases in the US) due to varying diagnostic and data collection methods. There is an opportunity here to improve these estimates based on modernized methods and community-defined standards, including criteria specified in the 2015 Institute of Medicine Report, and by considering questionnaire-based responses like the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort in the United Kingdom (Collin et al., 2016). 
 
Because of these complex scientific challenges, ME/CFS research presents an excellent opportunity for developing and piloting novel methods and technologies in discovering biomarkers, elucidating disease mechanisms, and revealing therapeutic possiblities. The methods we need to understand this complex disease may very well not exist yet. Engineering and technology development efforts towards highly sensitive, quantitative molecular profiling and/or measuring novel cellular properties, as well as novel computational analyses that integrate multiple datatypes to define disease mechanisms, should be encouraged. Again, it is highly likely that such efforts will prove useful in the study of other diseases, be they infectious, genetic, or complex in origin.
 
Beyond scientific considerations, we would like to note several programmatic considerations that we believe are key for rapid progress. Long-term studies of patients are absolutely essential. Such a mechanism has proven effective in the NIGMS Glue Grants described above. Moreover, maintaining an open structure in RFAs will allow scientists to develop and refine their hypotheses as research progresses, as appropriate for the unknown/uncertain nature of the field. As highlighted in several places above, the opportunities for collaborative efforts within and beyond the ME/CFS research community to understand and treat this disease are numerous. There are numerous experts spread across the world, each taking their own approaches based on their own expertise. We believe future funding programs should not only encourage, but establish frameworks for highly collaborative data sharing and strategizing that bring together researchers and clinicians. All data should be made publicly available as early as possible (even before publication), in both raw and accessible formats. This will not only facilitate collaboration (for example by encouraging biocomputing experts to engage with the data) and integrative analyses, but also empower patients to understand more about their disease and what progress is being made. As we have all seen, the ME/CFS patient community is extremely active, engaged, and eager for actionable results.
 We thank you once again for the opportunity to provide input on this matter, and look forward to the new strategies for ME/CFS research efforts put forth by this working group.
 Yours sincerely, 
Ronald W. Davis, Ph.D.  Professor of Biochemistry and Genetics, Stanford University
Director, Stanford Chronic Fatigue Syndrome Research Center and Stanford Genome Technology Center
Director, Scientific Advisory Board, Open Medicine Foundation
 
0 Comments

Teens With POTS: How Long Does It Last?

15/10/2016

0 Comments

 
Medscape paediatrics
​William T. Basco, Jr, MD, MS…. August 31, 2016  

Postural Orthostatic Tachycardia Syndrome
Postural orthostatic tachycardia syndrome (POTS) occurs in approximately 1% of adolescents. Teens often develop the condition after infectious illnesses (eg, mononucleosis) or athletic injuries.
POTS is characterized by chronic symptoms, including neurologic symptoms (eg, nausea, vision change, or dizziness), and an increase in heart rate of at least 40 beats/min when standing, without an alternative diagnosis for these symptoms. Overhydration, increasing salt intake, medications, exercise, and biofeedback can ameliorate symptoms.[1] The natural history of POTS in adults shows that the symptoms improve over time, but few data exist on adolescents.[2]
POTS in Teens
A recent study[3] assessed outcomes in a cohort of adolescents (aged 13-18 years; mean, 16.5 years) who were diagnosed with POTS at a single clinic from 2003 to 2010. In 2013, the teens were surveyed and asked to report on their symptom trajectory as they aged into young adulthood.
The survey was sent to 502 patients, and responses were received from 172 (response rate, 34%). A majority (84%) of the respondents were girls, and the average age at the time of the survey was 21.8 years. The average period between being evaluated for POTS and completing the survey was 5.4 years.
Of interest, 81% of respondents had attained some college or technical training compared with 41% of the US population in the same age range. Among respondents older than 23 years, 49% were college graduates—a proportion greater than that among the general US population.
At the time of POTS diagnosis, 72% of the respondents reported being prescribed a beta-blocker, and 27% of respondents were still taking these drugs. The second most common drug used to treat POTS was a selective serotonin reuptake inhibitor, prescribed for 28% of patients. When asked which treatment they believed had helped most, 48% of respondents chose excessive hydration, 45% chose physical conditioning, and 41% chose a high-salt diet. Fewer than 30% of the respondents reported that a drug was the most helpful treatment.
At the time of the survey, 71% of respondents reported being in excellent, very good, or good health, and 86% responded that their symptoms were either resolved, improved, or just intermittent. Symptoms had completely resolved in 19% of respondents, and 51.2% reported that their symptoms persisted but were milder. Whereas 15.7% of respondents reported a relapsing/remitting course of POTS, only 8.7% reported that their symptoms persisted with unchanged severity. Unfortunately, 3.5% reported persistent and more severe symptoms. Young men were more likely than young women to report complete remission (36% vs 16%).
Mean self-reported physical functioning and health assessment were lower than population means. In fact, physical health scores had the greatest correlation with overall health scores. The lowest health self-assessment scores were seen among those who reported pain, nausea, and exercise intolerance in conjunction with POTS symptoms. Among all respondents, despite improvement overall, 73% reported that they still experienced some degree of physical limitation during vigorous activity, 38% reported some effect on work or other activities, and 50% said that they accomplished less than they would like to accomplish.
These findings demonstrate that a large majority of adolescents with POTS improve over time and that persistence of physical symptoms correlates heavily with perceived health.
Viewpoint
In the introduction to their study,[3] Bhatia and colleagues review published data demonstrating that a multifaceted approach is often the best way to improve symptoms in patients with POTS. My anecdotal experience correlates with their finding that many patients present after an illness or injury, and prolonged inactivity often exacerbates both the real symptoms and the patient's psychological responses to them.
The take-home message from this study is to remember to offer these families hope, as confirmed by follow-up data on POTS in teens. The biggest concern for these patients is that they will never feel any better, given that they are often experiencing prolonged symptoms by the time they come to medical attention. I plan to use these findings to reinforce with families the need to take a multipronged approach. Searching for additional diagnoses is not always helpful, and rarely does one silver bullet relieve all symptoms.
9
0 Comments

Hanson's Metabolomics ME/CFS Study Validates Naviaux's Core Finding

15/10/2016

0 Comments

 
A Great Addition to the ME/CFS Field

Dr. Maureen Hanson has been all over the place in chronic fatigue syndrome (ME/CFS) lately.
Hailing from Duke and Harvard and now at Cornell she has quite a pedigree. With a family member with chronic fatigue syndrome (ME/CFS), she also has a personal stake in this disease, and has penned several editorials supporting ME/CFS research. Her "Be Aware and Beware" Huffington Post blog and her Congressional Hill post "When Hoofbeats are Zebras" showed that she's not afraid to leave the laboratory and get out and advocate. At every opportunity she makes it very clear that ME/CFS is a real disorder. Her last gut study went viral and was picked up by over 50 media outlets.

She recently spoke at the Invest in ME Conference, and at the Simmaron Patient event, and is on the scientific board of the Simmaron Research Foundation.

As and added bonus she appears to be very good at getting NIH grants. She first popped up in ME/CFS with a grant to study XMRV in 2011. Since 2011 she's gotten three R21 grants on ME/CFS, and is a collaborator on a big RO1 immune functioning grant with Fabian Campagne at Cornell. She's also being funded by the Hitchens Foundation's Chronic Fatigue Initiative. She seems to have a talent for taking on interesting studies. She's definitely someone to keep an eye on.

Metabolomics

Now she's moving into metabolomics. In the Solve ME/CFS webinar this week Hanson revealed that a small metabolomics study she pieced together using donations had replicated Naviaux's core finding - that ME/CFS is hypometabolic disorder.

Her study was smaller than Naviaux's: compare the 80 or so patients/controls and 612 metabolites measured in his study to the 32 patients/controls and 361 metabolites in the Hanson pilot study. All the participants n her study were also female and all came from an ME/CFS expert, Dr. Susan Levine, who has been collaborating heavily with Dr. Hanson.

Naviaux noted that the field is moving so quickly that it lacks standardization and this study showed it. The Hanson team used a different kind of mass spectrometer, and handled the samples differently. In fact, the way Hanson was talking, it sounded like everything was done differently in the Hanson study.

Nevertheless, Hanson's core findings were strikingly similar to Naviaux's. She found an almost across the board reduction in metabolite levels; fully eighty-eight percent of the metabolites in the ME/CFS patients were reduced (compared to 84% in Naviaux's study.)

Some similar pathways (phospholipids, purines, proline, fatty acid metabolism) showed up and others did not. The dramatic sphingolipid reductions Naviaux found, for instance, did not show up in the Hanson study, and Hanson found several pathways that did not show up in the Naviaux study.

Hanson suggested that the completely different methods used as well as the different geographic region the patients hailed from could explain the differences found. Whatever the differences found, the core finding of a distinct hypometabolism in chronic fatigue syndrome (ME/CFS) clearly excited Hanson and she stated:
"The similarities are very promising for metabolomics to give some very useful information about ME/CFS"
Click to expand...
Hanson's metabolomic money is gone, but she's applying for an NIH grant. Scoring a big ROI grant - say $3,000,000 over several years - would, of course, be a major step forward for metabolomic research in ME/CFS.

How to Fit Many Symptoms into One Core Pathology ...

With the Chronic Fatigue Initiative's help, Hanson has also been studying mitochondrial genetics. Naviaux has stated that people with ME/CFCS do not have a genetic mitochondrial disease, and Hanson's results backed that assertion up; in fact, none of the almost 200 patients tested had anything suggesting an inherited mitochondrial condition. She did, however, find evidence - as Ron Davis has suggested - that genetic polymorphisms could be producing different symptoms in different ME/CFS patients.

Maureen Hanson's Solve ME/CFS Initiative Webinar

One altered mitochondrial DNA gene, for instance, appeared to be associated with gut symptoms; another was correlated with chemical sensitivity - a problem that gets almost no research attention - but can be terribly impactful. (Dr. Naviaux believes, interestingly enough, that low energy states lend themselves to hypersensitivity reactions. )Hanson's study suggested genetic differences in the mitochondria could result in widely varying symptoms in ME/CFS. She noted though, that much, much larger studies are needed to validate her findings.

Hanson is not by any means done with the mitochondria; she is also examining the mitochondrial functioning of NK, T and B cells. The poor functioning of NK cells is one of the most consistently found immune abnormalities in ME/CFS, but problems with T-cell functioning have also been found, and reports of poorly functioning B-cells have shown up as well.

Could the immune problems in ME/CFS be caused by a hypo-metabolic or under-energized immune system? Hanson will use an Agilent device to determine if problems with glyoclysis - the energy pathway that releases ATP and ATP through the conversion of glucose - are sending immune cells into a somnolent state.

Hanson then went on talk about her recent gut findings which included a reduction (another reduction) in diversity and abundance of microbial species in ME/CFS. She also suggested that the reduction in microbial diversity seen in an ill twin might be associated with that twins reduced aerobic capacity.

A New Chronic Fatigue Syndrome (ME/CFS) Center

In some very good news Hanson announced that the Dean at Cornell has allowed Dr. Hanson to create a new ME/CFS research center called the "Center for Enervating NeuroImmune Disease" (CEND). (Enervating means feeling weak and lacking in energy). The Center will collaborate with Betsy Keller at Ithaca College. It contains three researchers, involves eight labs which have or are applying for an ME/CFS grant, and is working with no less than five physicians - and Hanson hopes it will grow significantly.

The fact that Hanson felt it was time to create a formal center for ME/CFS at Cornell, plus her ability to hit the ground running with a strong staff is very encouraging particularly at Cornell - which has a top ranked Medical School. The new Center will surely be a strong candidate for the projected NIH research consortium.

Maureen Hanson is clearly the kind of researcher we've been looking for and hope to get more of. She's very committed, she can get grants, she's daring enough to start an ME/CFS research center and she clearly works well with others.

Some ME/CFS Metabolomic / Metabolic Studies Coming Up

The Naviaux study really caught our attention but a surprising number of other groups are doing metabolomics/metabolic/mitochondrial studies. McGregor in Australia, for instance, has been studying metabolism/metabolomics in ME/CFS for years. Here are some metabolomic / mitochondrial studies underway.
o    Hanson's small ME/CFS metabolic study (under review now).
o    The Naviaux/Ron Davis OMF funded expansion of Naviaux's recent study
o    Naviaux's studycomparing the metabolome of ME/CFS patients and other diseases
o    Hanson's NK, T and B cell energy production study
o    The Lipkin/Hornig study tying metabolomics results in the blood to their gut findings.
o    The Bateman Horne Center/Watanabe Japanese metabolomics study. In what is clearly a Suzanne Vernon study, the Watanabe study, a Michael Hougton Canadian Cytokine Study, and Alan Light's Autoantibody study will all use the same 100 patients samples - thus allowing them potentially to merge their findings.....
o    Nath's metabolic chamber study in the Intramural study
o    Several studies from Armstrong and McGregor in Australia
o    The SolveME/CFS in house mitochondrial study (more on that later.)
The Bateman-Horne Study
Depression - Sometimes a Metabolic Disorder?

ME/CFS might not be the only disease which may get turned around by metabolomics. Let's take a quick look at a metabolomic study that could turn the medical profession's conception of depression - a disease that's often been confused with ME/CFS by doctors - upside down.

The potential breakthrough started, as many breakthroughs do, with one patient. As reported in the Pittsburg Post-Gazette, frustrated doctors who had run out of options with a treatment resistant young man with suicidal depression, turned to a biochemical geneticist for help.
The geneticist suggested doing a metabolic analysis of the young mans cerebral spinal fluid. That analysis turned the his life around. After finding that he had deficient levels of a protein called tetrahydrobiopterin, or BH4, they began treating him with a substance called sapropterin. He was able to recover, return to school and is now working in his chosen field.

After getting the same results in five other treatment resistant depressed patients, the group began a larger study looking at hundreds of metabolites in the spinal fluid of 33 patients. About two thirds of them displayed significant metabolic abnormalities; of those more than half (12/21) had the same cerebral folate deficiency found in the young man. All showed improvements including reductions in suicidal thoughts on a high dose regimen of folinic acid.

For some young people on the protocol the improvements have been dramatic. The parents of one 13 year stated that within a month of taking the folinic acid, “we felt like we had our Ben back."

This isn't to say that all the patients had that kind of result, but it does indicate the power of this technology to uncover new insights that can lead to dramatic improvements even in seemingly intractable diseases like treatment resistant depression (and who knows...perhaps ME/CFS.)

What would, one wonders, a metabolomic analysis of ME/CFS patients cerebral spinal fluid find?
 
Bottom of Form

 
0 Comments

Metabolic features of chronic fatigue syndrome

15/10/2016

0 Comments

 
The Economist
Chronic-fatigue syndrome
A new test may diagnose a mysterious illness, and also help to explain it
Sep 3rd 2016 | From the print edition
·          
CHRONIC-FATIGUE SYNDROME, or CFS, which afflicts over 1m people in America and 250,000 in Britain, is certainly chronic and surely fatiguing. But is it truly a syndrome, a set of symptoms reliably associated together and thought to have a single underlying cause—in other words, a definable disease?
CFS’s symptoms—debilitating exhaustion often accompanied by pain, muscle weakness, sleep problems, “brain fog” and depression—overlap with those of other conditions. These include fibromyalgia (itself the subject of existential doubt), clinical depression, insomnia and other sleep disorders, anaemia and diabetes. These overlaps lead some to be sceptical about CFS’s syndromic nature. They also mean many people with CFS spend years on an expensive “diagnostic odyssey” to try to find out what is going on.
Scepticism about CFS’s true nature is reinforced by the number of causes proposed for it. Viruses, bacteria, fungi and other types of parasite have all had the finger pointed at them. So have various chemicals and physical trauma. Evidence that CFS truly does deserve all three elements of its name has accumulated over the years but a definitive diagnostic test has remained elusive. Until, perhaps, now. For in this week’s Proceedings of the National Academy of Sciences Robert Naviaux of the University of California, San Diego, and his colleagues published evidence that the metabolisms of those diagnosed with CFS are all changing in the same way. Their data suggest it is this cellular response to CFS-triggering traumas, and not the way the response is set in motion, which should define the illness. They also show that this response produces a chemical signal that might be used for diagnosis.

Dr Naviaux and his team collected and analysed blood samples from 45 people who had been diagnosed with CFS, and also from 39 controls who were free of any CFS-related symptom. They then trawled through those samples looking at the levels of 612 specific chemicals, known as metabolites, which are produced during the day-to-day operations of living cells.
These metabolite profiles, they found, differed clearly and systematically between the patients and the controls. Some 20 metabolic pathways were affected, with most patients having about 40 specific abnormalities. The biggest differences were in levels of sphingolipids, which are involved in intercellular communication, though other molecules played a role as well. These differences should give clues as to what is happening at a cellular level during CFS. More immediately, a handful of the abnormalities—eight in men and 13 in women—were enough, collectively, to diagnose with greater than 90% accuracy who had the disease.
That is a good start. If this discovery is to lead to a reliable test for CFS, though, Dr Naviaux’s experiment will have to be repeated to compare those diagnosed as having CFS with those who are not so diagnosed yet display some of its symptoms. The answer should soon become apparent, for he is already applying his method to people who have depression, autism, traumatic brain injury and post-traumatic-stress disorder.
One crucial question that needs an answer if CFS is to be understood better is: what cellular changes are these metabolic abnormalities bringing about? Here, Dr Naviaux has already made an intriguing and slightly disturbing discovery. Similar metabolite profiles to those seen in CFS are characteristic of a state known as “dauer” that occurs in one of biology’s most-studied animals, a soil-dwelling threadworm called C. elegans (pictured). In dauer, which is reminiscent of hibernation in larger creatures, the worm puts its development on hold and enters a state of suspended animation in response to threats such as reduced food, water or oxygen levels. It can survive this way for months, though the lifespan of an active worm is mere weeks.
It may be a coincidence, but six of the diagnostic metabolites whose levels are low in CFS are also low in dauer. If it is not a coincidence, though, that suggests a biochemical overlap between the two conditions. If this were true, it could be of great value both in understanding CFS’s underlying biology and (because C. elegans is so well examined and easy to study) in experimenting with potential treatments.
From the print edition: Science and technology
 

0 Comments

July  2016

4/7/2016

0 Comments

 
​What Clinicians Should Know About the New Lyme Species
Paul G. Auwaerter, MD
 March 01, 2016 – Medscape Family Medicine
Hello. This is Paul Auwaerter with Medscape Infectious Diseases, from the Division of Infectious Diseases at Johns Hopkins. Tickborne infections continue to surprise us. Lyme disease historically has been the top vector-borne illness in North America, with 20,000-36,000 reported cases annually, although estimates suggest that the actual number of cases occurring in the United States annually might be upwards of 300,000.[1]
Other members of the Borrelia genus cause disease in the United States. Perhaps the oldest, known for many decades, have been the agents of relapsing fever—either louse-borne (which is fairly rare in this country) or, more commonly, tickborne. Tickborne relapsing fever is spread by soft ticks that like to bite at night, especially campers in sleeping bags, and often in elevated climates of 2000-7000 feet above sea level in the western United States.[2]
But two more recent borrelial species deserve some attention for anyone who treats patients who might have acquired a tickborne infection. The first is B miyamotoi.[3] This was first described in Russia a few years ago and was initially thought to cause a relapsing fever-like illness, but in the United States it was first described as causing a meningoencephalitis. B miyamotoi seems to be transmitted by the same deer tick that transmits Lyme disease, and commercial assays for testing for it aren't yet widely available. However, this infection can be severe enough to cause hospitalization with a sepsis-like presentation. More commonly, it is associated with a febrile illness and can be confused with atypical Lyme disease (without a rash), ehrlichiosis, or anaplasmosis.
However, the newest kid on the block was just described by groups at the Mayo Clinic and the Centers for Disease Control and Prevention.[4] The Mayo Clinic has been a reference lab for many tests throughout the United States. They have drawn samples from around the country and found six samples using polymerase chain reaction (PCR) testing for suspected Lyme disease that had atypical melting curves. Upon further genetic analysis, they found that this was a new species, which they have given the candidate name of B mayonii in recognition of where the work was done.
Of interest, the six patients were all from the upper Midwest—Minnesota or Wisconsin. All were ill with fever and rash. One was described as having an erythema migrans rash, others had diffuse maculopapular rashes. There is a suggestion of neurologic syndromes. One patient had arthritis and two others were ill enough to be admitted to the hospital.
Somewhat different from Lyme disease, however, is that some of these patients had very high spirochete loads in their blood. This skews more to what you might find in traditional relapsing fever.
Now, what does this mean? The authors suggest that this is a newly emerging borrelial infection because it hadn't been described in more than 90,000 samples from different regions that they had analyzed earlier, so they think it could just be found in the upper Midwest. Obviously, however, this is very much in the earliest stages.
This situation seems very similar to that in Europe, where B burgdorferi sensu stricto (what we have had here in the United States) accounts only for a small proportion of Lyme borreliosis. B garinii and B afzelii account for far more cases. Several borrelial species account for infections there. We are no longer limited to only one now that B mayonii is a separate entity.
There are no specific diagnostic tests yet. It is uncertain whether a B burgdorferi PCR would pick this up routinely. The Lyme C6 antibody, which is US Food and Drug Administration approved, at least detected the infection in all four patients. Less successful was the traditional two-tier immunoblot testing, although the IgM Western blot was positive in three out of three people tested. The IgG assay was far less successful.
Whether these patients need different treatment is unclear. They were treated the way that we would treat any tickborne infection. That is the right response at the current time.
Stay tuned, because we might uncover more tickborne infections with advanced molecular technologies. Clinicians should pay attention to what they think might be Lyme disease, ehrlichiosis, or anaplasmosis, which may indeed represent some of these alternative infections

 
 
From: Wall St JournalPatients, Scientists Fight Over Research-Data AccessSome scientists balk at disclosing details in study of chronic fatigue syndromeAmy Dockser Marcus
March 7, 2016 6:51 p.m. ET
A controversy surrounding a study of chronic fatigue syndrome is prompting some scientists to push back against demands that they make medical research data more widely available to other researchers and patients.
Data from clinical trials and other studies are increasingly open to public scrutiny. Proponents of open access say it can aid other scientists seeking to check research conclusions, and patient groups say it can help determine how useful potential new treatment options may be. The National Institutes of Health requires researchers it funds to make data available to other scientists and the public. And some medical journals have begun making open release of data a condition for publication.
But some scientists are concerned that research data in the wrong hands may be misused or misinterpreted. They also fear they may face harassment from other scientists or patients who disagree with the findings.
The debate recently boiled over regarding the long-running study in the United Kingdom of ME/CFS, a debilitating and poorly understood condition also known as myalgic encephalomyelitis or chronic fatigue syndrome. The study found that either a program of gradually increasing exercise, or cognitive behavioral therapy, led to modest improvements in patients’ fatigue and physical functioning compared with standard medical treatment, which consists mainly of educating patients about the condition and treating symptoms such as pain. The study, which is commonly known as Pace and involved 640 chronic fatigue patients, was first published in the journal the Lancet in 2011.
Some patients and other scientists have doubted the study’s conclusions. “These theories presume and insist that patients are not medically sick but simply suffering from dysfunctional cognitions that need to be changed,” said David Tuller, a lecturer in public health and journalism at the University of California, Berkeley. Dr. Tuller wrote an extensive analysis describing methodological problems with the Pace study that ran in October in “Virology Blog,” a widely read scientific blog.
On Monday, 43 scientists and clinicians sent a letter to the Lancet asking it to seek an independent reanalysis of the Pace study data. A petition disputing the trial results, and signed by 11,000 patients, caregivers and doctors, was submitted to the university, medical journals and posted online last week asking the researchers to release the data. And in October, the Information Commissioner’s Office, a U.K. independent authority that rules on public access to information, said Queen Mary University of London, which ran the Pace trial, must turn over research data to a patient who requested it; an appeal by the university will be heard next month.
Controversy has long surrounded ME/CFS, including how to define it and treat it. The National Institutes of Health in October said it was going to strengthen efforts to study the condition and find better prevention and treatment approaches. The Institute of Medicine found in a 2015 report about ME/CFS that exertion can make patients’ symptoms worse.
Queen Mary University declined to make the Pace investigators available for an interview. In a statement it said: “We have supplied requested, anonymized data to independent scientists, as part of the normal research collaboration.” It added it is also concerned for “the rights and welfare of trial participants.” The university said it is seeking further ethical, scientific, and patient advice on the matter.
Richard Horton, editor in chief of the Lancet, said he generally supports making data available to other scientists and patients. But, he said, “When you see some things written on social media [about the ME/CFS trial and the investigators], it makes you anxious that the claims for rational scientific debate based on access to the data may not be fully delivered.” Dr. Horton says the Lancet stands by the trial findings.
James Coyne, a professor of psychology at the University of Pennsylvania School of Medicine, in December asked another journal, PLOS One, which published a follow-up paper based on the Pace trial, to get the researchers to turn over their data. Among his concerns, Dr. Coyne said the researchers changed their outcome measures after the trial began and he wants to see if patients would have shown improvement under the original criteria. A spokesman for PLOS said the journal has contacted the study authors.
Tom Kindlon, 42 years old, of Dublin, and assistant chairman of the Irish ME/CFS Association, says he agrees patient confidentiality must be protected but that the research data he and others want access to “is not the sort of information that would identify people.” A concern he has is that patients in the trial might have reported feeling better, but that objective measurements of their performance, especially how far they could walk in six minutes, may not have shown actual improvement.
Anna Sheridan Wood, 40, a patient from Glasgow, also filed a request for data on the six-minute walking tests, but says the university turned her down. She has filed an appeal. She feels some scientists believe patients cannot be objective when assessing data because of their personal stake in the matter. But she will look at the data with “an open mind, as a scientist,” says Dr. Sheridan, who has a Ph.D. in physics.
Patients who request data aren’t subject to the same rules or controls that professional scientists are, says Stephan Lewandowsky, a cognitive scientist at the University of Bristol, in England, who co-authored a commentary in the journal Nature earlier this year arguing that open access to research data can be abused. Under certain conditions, “you have to say no,” he says. Dr. Lewandowsky has proposed creating an independent body that can weigh in on data requests either from scientists or members of the public “when things are contested.”

Dr. Jonas Blomberg Meets with Carol Head, Zaher Nahle
On Feb. 25, 2016 Solve ME/CFS Initiative President Carol Head and Dr. Zaher Nahle, Vice President for Research and Scientific Programs, met with Dr. Jonas Blomberg, a leading Swedish virologist, at the Solve ME/CFS Initiative offices in Los Angeles. Patient advocate Etel Barbork also visited the offices. During the meeting, a wide range of topics related to ME/CFS research and policy were discussed, including the status of ME/CFS research in Sweden and the rest of Europe.
The group also discussed potential collaborations between the Solve ME/CFS Initiative and Dr. Blomberg’s research group. Dr. Blomberg is leading an effort with a team of Swedish investigators, including: Dr. Carl-Gerhard Gottries, Dr. Per Julin, Dr. Anders Rosén and Dr. Jonas Bergquist, who are collaborating to investigate aspects of ME/CFS using new methodologies.

 
Open Medicine Foundation welcomes Dr. David S. Bell, newest Scientific Advisory Board member  We are pleased to announce David S. Bell, MD, a widely respected medical doctor with extensive ME/CFS experience, has joined our ME/CFS Scientific Advisory Board. 
 "I am thrilled to become part of Open Medicine Foundation for several reasons," said Dr. Bell. "First and foremost is that in the many years I have been studying the illness there has not been the comittment to it by the state of the art science, and that has been mainly because of scientific apathy and/or lack of funds. But the Open Medicine Foundation is starting with the understanding that ME/CFS is not going to reveal its mysteries without real science. It is my hope that I can add to the overall effort with my clinical perspective."
 We invite you to see what distinctive benefits Dr. Bell will bring as we move closer to Ending ME/CFS and listen to his latest public discourse on the disease. See more about Dr. Bell.
 WELCOME DR. BELL!
Linda Tannenbaum, Executive Director
Open Medicine Foundation
www.openmedicinefoundation.org
 
​
0 Comments

Folate and B12 in pregnancy

2/7/2016

0 Comments

 
Excessive Folate, B12 in Pregnancy Dramatically Ups Autism Risk
Pam Harrison
| May 12, 2016
 
BALTIMORE ― Excessive levels of plasma folate and vitamin B12 during pregnancy have been linked to a dramatic increase in autism risk in offspring, new research shows.
Investigators at Johns Hopkins University, Baltimore, found that when maternal plasma folate levels and vitamin B12 levels are >59 nmol/L and >600 pmol/L, respectively, autism risk is increased more than 17-fold.
The findings were presented at the International Meeting for Autism Research (IMFAR) 2016.
"When we looked at the vitamin supplementation evidence, we saw what our colleagues see ― that indeed, women who took vitamin supplementation during pregnancy had a lower risk of autism in their children and that is very consistent with the literature," principal investigator Daniele Fallin, PhD, director, Wendy Klag Center for Autism and Developmental Disabilities, John Hopkins Bloomberg School of Public Health, said during a press briefing.
"But when we looked at women who had excessively high levels of folate, we saw that very high levels of folate in the mother were responsible for about a twofold increased risk for autism in their child [P = .007], and when we looked at B12, women who had excessively high levels of B12 had a threefold increased risk for their child to have autism [P = .001], while women who had extreme levels of both folate and vitamin B12 had a 17.6 times greater risk of having their child diagnosed with an ASD [autism spectrum disorder] later on [P < .001]," she added.
"So for now, the public health message is, supplementation is good, but there may be a subset of women whose levels are extremely high, and these extreme levels may be harmful."
Led by Ramkripa Raghavan, MPH, investigators analyzed data from 1391 mother-child pairs enrolled in the Boston Birth Cohort, an ongoing, longitudinal study that includes a predominantly low- income, minority population.
The study included children born between 1998 and 2013 who were followed from birth through childhood. At the time of delivery, maternal serum folate and vitamin B12 levels were analyzed. Mothers were asked whether they took a multivitamin supplement during pregnancy and, if so, how often.
A total of 107 infants were diagnosed with autism, Asperger syndrome, and/or pervasive developmental disorder not otherwise specified and were categorized as having ASD.
Investigators noted that levels of both nutrients varied from deficiency levels of plasma folate (<13.5 nmol/L) and vitamin B12 (<200 pmol/L) to excessive levels of plasma folate (>59 nmol/L) and vitamin B12 (>600 pmol/L).
Dr Fallin said that the team was not able to determine whether excessive plasma folate and vitamin B12 levels corresponded to a certain level of intake of both supplements during pregnancy.
"In our study, we were not able to connect precise vitamin use and later folate and B12 levels in these mothers. But, generally speaking, it's important to appreciate that levels of folate in blood are not just a function of supplement intake. They are also a function of diet and a genetic makeup that can change dramatically how easily a person retains or clears folate," she said.
She acknowledged that it is important to establish what constitutes a safe and effective intake of supplements for women during pregnancy.
A Balanced Approach
Geraldine Dawson, MD, president of the International Society for Autism Research and professor of psychiatry and behavioral science at Duke University School of Medicine, Durham, North Carolina, told Medscape Medical News that it has long been known that diet and vitamin supplementation are very important for fetal brain development.
"Now we're also seeing that it's also important for lowering the risk that your child will have autism," she added.
Future research will help to identify exactly what levels of vitamins pregnant women need to take, she said.
"But I think the new finding here is that we've been focusing on the need for supplementation of vitamin B and also folate, but now we're also seeing that we don't want to take too much ― that if you have very high levels of these nutrients, that this is not optimal," Dr Dawson said.
"So the next step is to define what the right level is, but I think the message so far is to take moderate levels of supplements and not to overdo it, but certainly don't 'under-do' it, either."
Dr Fallin has disclosed no relevant financial relationships.
International Meeting for Autism Research (IMFAR) 2016: Abstract 149.004, to be presented May 13, 2016.
 
 
​
0 Comments

News March 2016

8/3/2016

0 Comments

 
It started with a failed attempt. Somehow Suzanne Vernon had prevailed upon Armin Alaedini, a PhD from Columbia University look for antibodies that might be attacking the central nervous system in chronic fatigue syndrome (ME/CFS). He found none but then decided to look a little further - and found evidence of an increased antibody response to gluten in a subset of ME/CFS patients. His finding that the degree of the antibody response correlated with symptom severity suggested that this response could be an important player for some people with ME/CFS.

From Phoenix Rising - March 2016:

 ME/CFS: It Had to Be Different


The really intriguing finding from the study, though, was that further testing suggested that the ME/CFS patients response to gluten was different than seen in celiac disease. Celiac disease is clearly characterized by antibodies to an enzyme called transglutaminase 2 enzyme. One study reported that these antibodies are so prevalent in celiac disease that they exhibit "extraordinar(ily) high .... specificity and sensitivity" for a disease.

They're not present in ME/CFS, though. Something else is happening. In fact, Alaedini believes the response to gluten he's seen in ME/CFS may be unique to the disorder. (ME/CFS just HAD to be different (lol)). That perhaps doesn't surprise patients who have found their disease fall through the cracks again and again but it does set the stage for a possibly exciting (and newsworthy) finding. Given the interest in celiac disease and gluten intolerance a novel finding in ME/CFS would be sure to spark considerable interest.

We hypothesize that the molecular targets of the antibody response to gluten in ME/CFS are unique, further characterization of which may identify novel biomarkers of the condition.
Click to expand...
Of course it would also mean that current celiac testing protocols are not terribly accurate with regard to people with ME/CFS.

Leaky Gut Syndrome and Inflammation

Alaedini's findings - which are publication now - set the stage for a grant application to explore not just gluten antibodies but leaky gut syndrome, the translocation of substances to the blood and systemic inflammation in a subset of patients.

The grant approval was another bit of good news but Suzanne Vernon used her contacts to take Alaedini's research a step further. Shukla's recent study - which Vernon funded while at The Solve ME/CFS Initiative - suggested that exercise may cause the gut to leak substances into the blood causing inflammation and possibly fatigue and pain. Suzanne Vernon prevailed upon Shukla to contribute his samples to the Alaedini study.

Those samples gives Alaedini access to another set of well-characterized patients and a quick validation of his findings. Plus he'll be able to see the effects exercise have on them and vice versa. My guess is that the ME/CFS subset with Alaedini's antibodies will exhibit greater gut leakage and more evidence of inflammation after exercise than other ME/CFS patients.

The Bateman-Horne Center is partnering with Dr. Alaedini to provide samples from ME/CFS patients and controls.

Gut Studies Underway

The gut is getting a lot of attention. We just saw the publication of two Australian studies and Shukla's was published in December. The NIH Project Reporter page reports three studies have been funded in recent years.
  • INTESTINAL IMMUNE RESPONSE IN MYALGIC ENCEPHALOMYELITIS/CHRONIC FATIGUE SYNDROME (Alaedini)
  • MICROBIAL DISCOVERY AND IMMUNITY IN ME/CFS (Lipkin)
  • MICROBIOMES AND INFLAMMATION IN CHRONIC FATIGUE SYNDROME (Hanson - ended 2015)
Drs. Lipkin and Hornig are involved in at least two, perhaps three gut studies. One was funded by the Microbiome project, another I believe was funded by the CFI, and there's' the recent NIH funded study (which provides for sample collection only.)

Invest in ME is funding a leaky gut/microbiome project. Others are surely underway.

0 Comments

​NIH takes action to bolster research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

17/1/2016

0 Comments

 
The National Institutes of Health is strengthening its efforts to advance research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a disease for which an accurate diagnosis and effective treatment have remained elusive. The actions being taken include launching a research protocol at the NIH Clinical Center to intensely study individuals with ME/CFS and re-invigorating the efforts of the long-standing Trans-NIH ME/CFS Research Working Group with the National Institute of Neurological Disorders and Stroke (NINDS) as the lead of a multi-institute research effort.
“Of the many mysterious human illnesses that science has yet to unravel, ME/CFS has proven to be one of the most challenging,” said NIH Director Francis S. Collins, M.D., Ph.D. “I am hopeful that renewed research focus will lead us toward identifying the cause of this perplexing and debilitating disease so that new prevention and treatment strategies can be developed.”
NIH’s direction on the disease is being guided by a recent Institute of Medicine report , that recommended new diagnostic criteria and a new name for the disease (Systemic Exertion Intolerance Disease), and an NIH-sponsored Pathways to Prevention meeting that generated a position paper and report with recommendations for research strategies.
The symptoms result in significant functional impairment accompanied by profound fatigue. Because the pathology of ME/CFS remains unknown and there is no test to diagnose the disease, studies to date have used different criteria for diagnosis, which has limited the ability to compare results across studies. Additionally, many of the published studies are based on small study populations and have not been replicated.
In an effort to remedy this situation, NIH will design a clinical study in the NIH Clinical Center with plans to enroll individuals who developed fatigue following a rapid onset of symptoms suggestive of an acute infection. The study will involve researchers from NINDS, the National Institute of Allergy and Infectious Diseases, National Institute of Nursing Research and National Heart, Lung, and Blood Institute. The primary objective of the study is to explore the clinical and biological characteristics of ME/CFS following a probable infection to improve understanding of the disease’s cause and progression.
NIH will also be considering additional ways to support ME/CFS research in the extramural research community. Since the root cause of ME/CFS is unknown and the manifestations of the disorder cut across the science interests of multiple NIH institutes and centers, a trans-NIH working group will be needed to assist that plan. NINDS Director Walter J. Koroshetz, M.D., will chair the Working Group along with Vicky Holets Whittemore, Ph.D., the NIH representative to the U.S. Department of Health and Human Services’ Chronic Fatigue Syndrome Advisory Committee. One goal of the group will be to explore how new technologies might shed light on what causes ME/CFS. The Working Group includes representation from 23 NIH institutes, centers and offices.
0 Comments
<<Previous
Forward>>

    News Items

    News items about Chronic Fatigue Syndrome

    Archives

    August 2023
    October 2022
    February 2021
    June 2020
    November 2019
    September 2018
    May 2018
    January 2018
    November 2017
    October 2016
    July 2016
    March 2016
    January 2016

    Categories

    All

    RSS Feed

Website designed by Chelsea Vallings Graphic Design
Copyright © 2015